Comments on Facility Designs

Ron Malone, Ph.d., PE(LA) Chief technology Officer Aquaculture Systems Technologies New Oreleans, Louisiana

Specializes in Floating Bead Filters RAS Aquaculture RAS/Aquaponics Zoos Industrial Wastewater Domestic Wastewater Nitrification Denitrification TSS removal BOD5 reduction Sludge Digestion

Heavy R&D Component 50 % staff engineering several Consultants SBIR research Support of Univ. R&D

Develop RAS Layouts & production estimates for Freshwater Marine Aquaponics

Work with local engineers Building Issues Power Heating Water supply Discharge issues Bea

BeadFilters.com AstFilters.com Tanks

Layout of the proposed facility

Early systems were sized with a G:L Of 2 about 0.25 hp/1000 gallon These units used <u>variable frequency drives</u> to optimize energy usage

Condensation Problems

80,000 gal (300 m3)

80,000 gal (300 m3)

Texas

Collins, South Dakota (2008)

Mississippi, 2007

-

Truck Access for Feeding Harvesting

Illinois, 1997

Borthe 17 17 3 7. 3

Ron@PolyGeyser.com

Summary-Building-Marine

- Beware of condensation
- Avoid metal
- Minimize electronics and voltage in wet room
- Design and open format for access
- Retangular tanks are make for more efficient space utilization
- Green houses are used into the mid west as a cost effective alternatives Abandoned Chicken/turkey houses also widely used
- Design for energy conservation
- Pumps must draw external air to avoid CO2 buildup
- Avoid slick floors

Fractal design = disease avoidance

Mostly heated by air

Questions

Denitrification, Water Reuse, and Waste Management

Ron Malone and Matt Louque Aquaculture Systems Technologies New Orleans, Louisiana <u>Ron.Malone@Astfilters.com</u>

Reusing Water

- Alkalinity exhaustion
- Nitrate accumulation
- Refractory Organic Accumulation

Solids management

- Treating Sludge
- Disposing of sludge

Water Reuse

- Water does not "age"
- For shrimp growout
 - Salt level increases due to evaporationadd freshwater
 - Alkalinity will decline at some point.....add bicarbonates
 - Refractory organics will accumulate....water browns.....ozonate if you care
 - Nitrates increase.....denitrify or discharge
- Cumulative feed burden (CFB) an indicator of water resuse can range from 1,000-100,000 gm /m³
 - No clear limit on water reuse once dentrification is implemented.

- Liao (1977)
- Delmendo & Rabanal (1956)
- Hirasawa (1985)
- This growout starts at a single shrimp weight of about 1gram. (only shows the final 3 months of growout)

- 30 grams nitrogen per kg feed @35 % protein
- From protein metabolism

- Feeding produces ammonia
- Ammonia is toxic at a few mg-N/L
- Ammonia has energy to give
- Nitrifier bacteria have the enzymes to unlock the energy

- Energy producing reaction
- Requires chemotrophic nitrifiers (slow growing)
- Oxygen > 2* mg/L (consumes 4.56 **mg/mg-N converted)
- Alkalinity >100* mg/L (consumes 7.5** mg/mg-N)
- pH>7.0 (impacted through alkalinity consumption)

That's 1/4 kg sodium bicarbonate per kg feed added. Adds 7-10 cents cost per kg fish produced

Produces Nitrate

- stable under aerobic conditions (forever)
- Toxic as in the range of 300-500 mg/L

- Practical management minimums
- **stochiometric ratios

Here is the pattern of alkalinity exhaustion -No denitrifcation -No carbon added

Add

- Sodium bicarbonate (safest, dosage insensitive)
- Hydrated Lime (cheapest, calcium precipitates, dosage highly sensitive)
- Soda Ash (moderately unstable pH)

Alkalinity Consumption w/ Denitrification

Summary -Alkalinity

.

- Akalinity declines accelerate as shrimp grow
- Low alkalinity impairs nitrification
- Correctable by Bicarbonate/Lime addition
- Denitrifcation reduces Alkalinity declines by 50%

Common Reuse Characterization

Туре	HRT	CFB	
	(days)	(mg/l)	
Open	1-5	1,000-3,000	
Closed	20-60	10,000-30,000	
No Discharge	100+	100,000+	

Different CFB values induced by water exchange

Ozone $O_3 + H_2O \rightarrow HO_3^+ + OH^ HO_3 + + OH^- \rightarrow 2HO_2$ $O_3 + HO_2 \rightarrow HO + 2O_2$ $HO + HO_2 \rightarrow H_2O + O_2$ Free Radicals responsible

for disinfection

These are only two of the many ozone generators that are commercially available. Photos from AquaticEco.com

Ozone Energy Requirements (color control)

Component	Median Energy Consumption	
	kWh/kg ozone	
Air Preparation	5.5	
Ozone Generation (Air Feed)	16.5	
Ozone Generation (Pure Oxygen)	9.9	
Ozone Contacting	4.4	
All other components	1.7	
Total (Air Feed)	28.1	
Total (Pure Oxygen)	21.5	

Ozone Dosing: 7 – 15 g O3/kg feed (Christensen et. al. 2000)

Feed	Operating Disinfection Cost (\$/kg shrimp or fish produced)	
Air	0.03 - 0.06	
Pure Oxygen	0.02 – 0.05	

Assumes an energy cost of 0.08/kWh

Capital costs not included

Food conversion ratio at 1.5

Source: Metcalf and Eddy 2003

Here is the pattern of nitrate accumulation for the first season

Anaerobic Denitrification

- Heterotrophic bacteria (fast growing) •
- Oxygen < 0.5 mg/L •
- Nitrate must be present •
- Conversion of Nitrate to N2 gas id an energy loser •
- A source of energy (carbon) required to provide the energy

Once the N2 gas is formed it leaves the water ...No More problem

vitrate Carbon • Ethanol Methanol

vitrite

N218asi

energy

e-

- Starches
- Sugars
- Manure

Fig. 2. Denitrification processes with different organic substrates.

Not Complicated

Aquacultural Engineering 22 (2000) 75–85

Biodegradable polymers as solid substrate and biofilm carrier for denitrification in recirculated aquaculture systems

A. Boley *, W.-R. Müller, G. Haider Universität Stuttgart, Institut für Siedlungswasserbau, Wassergüte- und Abfallwirtschaft, Arbeitsbereich Biologie, Bandtäle 2, D-70569 Stuttgart, Germany

Table 4

Estimated costs of substrates for nitrate removal

Substrate	Price of substrate (€/kg substrate)	Consumption of substrate (kg substrate/kg N-NO ₃ ⁻)	Costs of denitrification (€/kg N-NO ₃ ⁻)
Methanol: CH ₃ OH	1.00	2.08-3.98	2.0-4.0
Ethanol: C ₂ H ₅ OH	1.20	2.0	2.4
Acetic acid: CH ₃ COOH	2.40	3.5	8.0
PCL $(C_6H_{10}O_2)_n$	5.00	1.33–1.77	6.6-8.9
PHB $(C_4H_6O_2)_n$	10.00	2.1–2.7	21.0-37.2
Bionolle $\# 6010$ (C ₆ H ₄ O ₂) _n	Commercially not available		

Jaap van Rijn and Yoram Barak

Intensive Fish Culture Unit - Ginosar

Pilot system – general layout

Effluent treatment stages

Design team:

N. Mozes (IOLR), O. Lahav (Technion), I. Haddas (Kora), M. Shnitzer (Chagam)

Noam Mozes, Yuval Alfiya, Israel Haddas (2006)

reactor

Summary: Nitrate control

Internal denitrification (block level) is recommended

- Consider the Israeli model that use sludge for carbon
- Extends water reuse through several growout cycles
- Reduces salt costs
- Reduces alkalinity costs
- Supplemental Denitrification
 - Passive de-nitrification for small operations
 - Traditional denitrification for larger facilities

- Assumed 33% conversion of feed to sludge mass for fixed film system
- Biofloc system was set to maintain solids at 500 ppm in system, sludge production stays at zero up until day 65 due to internal sludge digestion keeping system below 500ppm
- @ 4% solids, 311 gallons of sludge for fixed film system (total sludge * 0.25)
- @ 4% solids, 356 gallons of sludge for biofloc system (with 67% stabilization (accounting for indigestible minerals)

Sludge Stabilization-Objectives

- Reduce Organic Content
 - Eliminate Odor
 - Improve Physical Characteristics
 - Reduces solids volume (70-90% reduction)

Typical Open RAS

Sodium Accumulation and Land Application

- Specific Ion Toxicity
- Water Infiltration Problems
 - High Na+ can cause
 - Formation of Crusts
 - Waterlogging
 - Reduced Permeability

$$SAR = \frac{Na^{+}}{\sqrt{\frac{Ca^{2+} + Mg^{2+}}{2}}}$$

SAR = Sodium Adsorption Ratio Concentrations in meq/L

SAR > 9 can cause severe restrictions on surface irrigation of soils thus requiring large areas for disposal

Sludge Disposal

Figure 13.5 Low rate anaerobic process using an earthen basin.

Grady et al 1999

"No Discharge" Marine Inland System?

References

- 1. Liao, I.C. 1977. A culture study on grass prawn, Penaeus monodon, in Taiwan the patterns, the problems and the prospects. J. Fish. Soc. Taiwan, 5: 11-29.
- Delmendo, M. N., and H. R. Rabanal, 1956. Cultivation of 'sugpo' (jumbo tiger shrimp) *Penaeus monodon* Fabricius, in the Philippines. Indo-Pacific Fisheries Council, Proceedings, 6th Session, Sections 2 and 3, p. 424 – 431.
- Hirasawa, Y. (1985). Economics of shrimp culture in Asia. In Y. Taki, J. H. Primavera, & J. A. Llobrera (Eds.), Proceedings of the First International Conference on the Culture of Penaeid Prawns/Shrimps, 4-7 December 1984, Iloilo City, Philippines (pp. 131–150). Iloilo City, Philippines: Aquaculture Department, Southeast Asian Fisheries Development Center.
- 4. Sara, J.R. 2007. Establishing the protein requirement in the marine prawn Fenneropenaeus indicus. Ph.D. Thesis. School of Biological and Conservation Sciences. University of KwaZulu-Natal. Durban, South Africa, 269 pp.